1 module raymathext;
2 
3 import raylib;
4 import std.math;
5 
6 pragma(inline, true):
7 
8 version (unittest)
9 {
10     import fluent.asserts;
11 }
12 
13 mixin template Linear()
14 {
15     import std.algorithm : canFind, map;
16     import std.range : join;
17     import std.traits : FieldNameTuple;
18 
19     private static alias T = typeof(this);
20 
21     static T zero()
22     {
23         enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
24         return mixin("T(" ~ fragment ~ ")");
25     }
26 
27     static T one()
28     {
29         enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
30         return mixin("T(" ~ fragment ~ ")");
31     }
32 
33     inout T opUnary(string op)() if (["+", "-"].canFind(op))
34     {
35         enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
36         return mixin("T(" ~ fragment ~ ")");
37     }
38 
39     static if (is(T == Rotor3))
40     {
41         /// Returns a rotor equivalent to first apply p, then apply q
42         inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
43         {
44             alias p = this;
45             Rotor3 r;
46             r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
47             r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
48             r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
49             r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
50             return r;
51         }
52 
53         inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
54         {
55             Vector3 rv;
56             rv.x = a * v.x + xy * v.y - zx * v.z;
57             rv.y = a * v.y + yz * v.z - xy * v.x;
58             rv.z = a * v.z + zx * v.x - yz * v.y;
59             return rv;
60         }
61 
62         inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
63         {
64             Vector3 vr;
65             vr.x = v.x * a - v.y * xy + v.z * zx;
66             vr.y = v.y * a - v.z * yz + v.x * xy;
67             vr.z = v.z * a - v.x * zx + v.y * yz;
68             return vr;
69         }
70     }
71     else
72     {
73         inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
74         {
75             enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
76             return mixin("T(" ~ fragment ~ ")");
77         }
78     }
79 
80     inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
81     {
82         enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
83         return mixin("T(" ~ fragment ~ ")");
84     }
85 
86     inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
87     {
88         enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
89         return mixin("T(" ~ fragment ~ ")");
90     }
91 }
92 
93 unittest
94 {
95     Assert.equal(Vector2.init, Vector2.zero);
96     Assert.equal(Vector2(), Vector2.zero);
97     Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
98     auto a = Vector3(1, 2, 9);
99     immutable b = Vector3(3, 4, 9);
100     Vector3 c = a + b;
101     Assert.equal(c, Vector3(4, 6, 18));
102     Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
103     Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
104 }
105 
106 import std.traits : FieldNameTuple;
107 import std.algorithm : map;
108 import std.range : join;
109 
110 float length(T)(T v)
111 {
112     enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
113     return mixin("sqrt(" ~ fragment ~ ")");
114 }
115 
116 T normal(T)(T v)
117 {
118     return v / v.length;
119 }
120 
121 float distance(T)(T lhs, T rhs)
122 {
123     return (lhs - rhs).length;
124 }
125 
126 float dot(T)(T lhs, T rhs)
127 {
128     enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
129                 "+");
130     return mixin(fragment);
131 }
132 
133 unittest
134 {
135     Assert.equal(Vector2(3, 4).length, 5);
136     const a = Vector2(-3, 4);
137     Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
138     immutable b = Vector2(9, 8);
139     Assert.equal(b.distance(Vector2(-3, 3)), 13);
140     Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
141     Assert.equal(Vector2.one.length, sqrt(2.0f));
142 }
143 
144 unittest
145 {
146     Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
147 }
148 
149 /// Mix `amount` of `lhs` with `1-amount` of `rhs`
150 ///   `amount` should be between 0 and 1, but can be anything
151 ///   lerp(lhs, rhs, 0) == lhs
152 ///   lerp(lhs, rhs, 1) == rhs
153 T lerp(T)(T lhs, T rhs, float amount)
154 {
155     return lhs + amount * (rhs - lhs);
156 }
157 
158 /// angle betwenn vector and x-axis (+y +x -> positive)
159 float angle(Vector2 v)
160 {
161     return atan2(v.y, v.x);
162 }
163 
164 Vector2 rotate(Vector2 v, float angle)
165 {
166     return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
167 }
168 
169 Vector2 slide(Vector2 v, Vector2 along)
170 {
171     return along.normal * dot(v, along);
172 }
173 
174 Bivector2 wedge(Vector2 lhs, Vector2 rhs)
175 {
176     Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
177     return result;
178 }
179 
180 // dfmt off
181 Bivector3 wedge(Vector3 lhs, Vector3 rhs)
182 {
183     Bivector3 result = {
184         xy: lhs.x * rhs.y - lhs.y * rhs.x,
185         yz: lhs.y * rhs.z - lhs.z * rhs.y,
186         zx: lhs.z * rhs.x - lhs.x * rhs.z,
187     };
188     return result;
189 }
190 
191 Vector3 transform(Vector3 v, Matrix4 mat)
192 {
193     with (v) with (mat)
194         return Vector3(
195             m0 * x + m4 * y + m8 * z + m12,
196             m1 * x + m5 * y + m9 * z + m13,
197             m2 * x + m6 * y + m10 * z + m14
198         );
199 }
200 // dfmt on
201 
202 Vector3 cross(Vector3 lhs, Vector3 rhs)
203 {
204     auto v = wedge(lhs, rhs);
205     return Vector3(v.yz, v.zx, v.xy);
206 }
207 
208 unittest {
209     // TODO
210 }
211 
212 /// Returns a unit rotor that rotates `from` to `to`
213 Rotor3 rotation(Vector3 from, Vector3 to)
214 {
215     return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
216 }
217 
218 Rotor3 rotation(float angle, Bivector3 plane)
219 {
220     return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
221 }
222 
223 /// Rotate q by p
224 Rotor3 rotate(Rotor3 p, Rotor3 q)
225 {
226     return p * q * p.reverse;
227 }
228 
229 /// Rotate v by r
230 Vector3 rotate(Rotor3 r, Vector3 v)
231 {
232     return r * v * r.reverse;
233 }
234 
235 Rotor3 reverse(Rotor3 r)
236 {
237     return Rotor3(r.a, -r.b);
238 }
239 
240 unittest
241 {
242     // TODO
243 }