1 module raymathext;
2 
3 import raylib;
4 import std.math;
5 
6 pragma(inline, true):
7 
8 // Bivector2 type
9 struct Bivector2
10 {
11     float xy = 0.0f;
12     alias xy this;
13     mixin Linear;
14 }
15 
16 // Bivector3 type
17 /// Beware of the field order
18 /// xy is the first field
19 struct Bivector3
20 {
21     float xy = 0.0f;
22     float yz = 0.0f;
23     float zx = 0.0f;
24     mixin Linear;
25 }
26 
27 // Rotor type
28 struct Rotor3
29 {
30     float a = 1.0f;
31     float xy = 0.0f;
32     float yz = 0.0f;
33     float zx = 0.0f;
34     mixin Linear;
35 
36     alias i = yz;
37     alias j = zx;
38     alias k = xy;
39 
40     @property Bivector3 b()
41     {
42         return Bivector3(xy, yz, zx);
43     }
44 
45     @property Bivector3 b(Bivector3 _b)
46     {
47         xy = _b.xy;
48         yz = _b.yz;
49         zx = _b.zx;
50         return _b;
51     }
52 
53     this(float _a, Bivector3 _b)
54     {
55         a = _a;
56         b = _b;
57     }
58 
59     this(float _a, float _xy, float _yz, float _zx)
60     {
61         a = _a;
62         xy = _xy;
63         yz = _yz;
64         zx = _zx;
65     }
66 }
67 
68 alias Matrix4 = Matrix;
69 
70 version (unittest)
71 {
72     import fluent.asserts;
73 }
74 
75 mixin template Linear()
76 {
77     import std.algorithm : canFind, map;
78     import std.range : join;
79     import std.traits : FieldNameTuple;
80 
81     private static alias T = typeof(this);
82 
83     static T zero()
84     {
85         enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
86         return mixin("T(" ~ fragment ~ ")");
87     }
88 
89     static T one()
90     {
91         enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
92         return mixin("T(" ~ fragment ~ ")");
93     }
94 
95     inout T opUnary(string op)() if (["+", "-"].canFind(op))
96     {
97         enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
98         return mixin("T(" ~ fragment ~ ")");
99     }
100 
101     static if (is(T == Rotor3))
102     {
103         /// Returns a rotor equivalent to first apply p, then apply q
104         inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
105         {
106             alias p = this;
107             Rotor3 r;
108             r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
109             r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
110             r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
111             r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
112             return r;
113         }
114 
115         inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
116         {
117             Vector3 rv;
118             rv.x = a * v.x + xy * v.y - zx * v.z;
119             rv.y = a * v.y + yz * v.z - xy * v.x;
120             rv.z = a * v.z + zx * v.x - yz * v.y;
121             return rv;
122         }
123 
124         inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
125         {
126             Vector3 vr;
127             vr.x = v.x * a - v.y * xy + v.z * zx;
128             vr.y = v.y * a - v.z * yz + v.x * xy;
129             vr.z = v.z * a - v.x * zx + v.y * yz;
130             return vr;
131         }
132     }
133     else
134     {
135         inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
136         {
137             enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
138             return mixin("T(" ~ fragment ~ ")");
139         }
140 
141         ref T opOpAssign(string op)(inout T rhs) if (["+", "-"].canFind(op))
142         {
143             static foreach (field; [FieldNameTuple!T])
144                 mixin(field ~ op ~ "= rhs." ~ field ~ ";");
145             return this;
146         }
147     }
148 
149     inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
150     {
151         enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
152         return mixin("T(" ~ fragment ~ ")");
153     }
154 
155     inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
156     {
157         enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
158         return mixin("T(" ~ fragment ~ ")");
159     }
160 
161     ref T opOpAssign(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
162     {
163         static foreach (field; [FieldNameTuple!T])
164             mixin(field ~ op ~ "= rhs;");
165         return this;
166     }
167 }
168 
169 unittest
170 {
171     Assert.equal(Vector2.init, Vector2.zero);
172     Assert.equal(Vector2(), Vector2.zero);
173     Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
174     auto a = Vector3(1, 2, 9);
175     immutable b = Vector3(3, 4, 9);
176     Vector3 c = a + b;
177     Assert.equal(c, Vector3(4, 6, 18));
178     Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
179     Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
180     a += 5;
181     Assert.equal(a, Vector3(6, 7, 14));
182     a *= 0.5;
183     Assert.equal(a, Vector3(3, 3.5, 7));
184     a += Vector3(3, 2.5, -1);
185     Assert.equal(a, Vector3(6, 6, 6));
186 }
187 
188 import std.traits : FieldNameTuple;
189 import std.algorithm : map;
190 import std.range : join;
191 
192 float length(T)(T v)
193 {
194     enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
195     return mixin("sqrt(" ~ fragment ~ ")");
196 }
197 
198 T normal(T)(T v)
199 {
200     return v / v.length;
201 }
202 
203 float distance(T)(T lhs, T rhs)
204 {
205     return (lhs - rhs).length;
206 }
207 
208 float dot(T)(T lhs, T rhs)
209 {
210     enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
211                 "+");
212     return mixin(fragment);
213 }
214 
215 unittest
216 {
217     Assert.equal(Vector2(3, 4).length, 5);
218     const a = Vector2(-3, 4);
219     Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
220     immutable b = Vector2(9, 8);
221     Assert.equal(b.distance(Vector2(-3, 3)), 13);
222     Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
223     Assert.equal(Vector2.one.length, sqrt(2.0f));
224 }
225 
226 unittest
227 {
228     Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
229 }
230 
231 /// Mix `amount` of `lhs` with `1-amount` of `rhs`
232 ///   `amount` should be between 0 and 1, but can be anything
233 ///   lerp(lhs, rhs, 0) == lhs
234 ///   lerp(lhs, rhs, 1) == rhs
235 T lerp(T)(T lhs, T rhs, float amount)
236 {
237     return lhs + amount * (rhs - lhs);
238 }
239 
240 /// angle betwenn vector and x-axis (+y +x -> positive)
241 float angle(Vector2 v)
242 {
243     return atan2(v.y, v.x);
244 }
245 
246 Vector2 rotate(Vector2 v, float angle)
247 {
248     return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
249 }
250 
251 Vector2 slide(Vector2 v, Vector2 along)
252 {
253     return along.normal * dot(v, along);
254 }
255 
256 Bivector2 wedge(Vector2 lhs, Vector2 rhs)
257 {
258     Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
259     return result;
260 }
261 
262 // dfmt off
263 Bivector3 wedge(Vector3 lhs, Vector3 rhs)
264 {
265     Bivector3 result = {
266         xy: lhs.x * rhs.y - lhs.y * rhs.x,
267         yz: lhs.y * rhs.z - lhs.z * rhs.y,
268         zx: lhs.z * rhs.x - lhs.x * rhs.z,
269     };
270     return result;
271 }
272 
273 Vector3 transform(Vector3 v, Matrix4 mat)
274 {
275     with (v) with (mat)
276         return Vector3(
277             m0 * x + m4 * y + m8 * z + m12,
278             m1 * x + m5 * y + m9 * z + m13,
279             m2 * x + m6 * y + m10 * z + m14
280         );
281 }
282 // dfmt on
283 
284 Vector3 cross(Vector3 lhs, Vector3 rhs)
285 {
286     auto v = wedge(lhs, rhs);
287     return Vector3(v.yz, v.zx, v.xy);
288 }
289 
290 unittest {
291     // TODO
292 }
293 
294 /// Returns a unit rotor that rotates `from` to `to`
295 Rotor3 rotation(Vector3 from, Vector3 to)
296 {
297     return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
298 }
299 
300 Rotor3 rotation(float angle, Bivector3 plane)
301 {
302     return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
303 }
304 
305 /// Rotate q by p
306 Rotor3 rotate(Rotor3 p, Rotor3 q)
307 {
308     return p * q * p.reverse;
309 }
310 
311 /// Rotate v by r
312 Vector3 rotate(Rotor3 r, Vector3 v)
313 {
314     return r * v * r.reverse;
315 }
316 
317 Rotor3 reverse(Rotor3 r)
318 {
319     return Rotor3(r.a, -r.b);
320 }
321 
322 unittest
323 {
324     // TODO
325 }