1 module raylib.raymathext; 2 3 import raylib; 4 import std.math; 5 6 pragma(inline, true): 7 8 // Bivector2 type 9 struct Bivector2 10 { 11 float xy = 0.0f; 12 alias xy this; 13 mixin Linear; 14 } 15 16 // Bivector3 type 17 /// Beware of the field order 18 /// xy is the first field 19 struct Bivector3 20 { 21 float xy = 0.0f; 22 float yz = 0.0f; 23 float zx = 0.0f; 24 mixin Linear; 25 } 26 27 // Rotor type 28 struct Rotor3 29 { 30 float a = 1.0f; 31 float xy = 0.0f; 32 float yz = 0.0f; 33 float zx = 0.0f; 34 mixin Linear; 35 36 alias i = yz; 37 alias j = zx; 38 alias k = xy; 39 40 @property Bivector3 b() 41 { 42 return Bivector3(xy, yz, zx); 43 } 44 45 @property Bivector3 b(Bivector3 _b) 46 { 47 xy = _b.xy; 48 yz = _b.yz; 49 zx = _b.zx; 50 return _b; 51 } 52 53 this(float _a, Bivector3 _b) 54 { 55 a = _a; 56 b = _b; 57 } 58 59 this(float _a, float _xy, float _yz, float _zx) 60 { 61 a = _a; 62 xy = _xy; 63 yz = _yz; 64 zx = _zx; 65 } 66 } 67 68 alias Matrix4 = Matrix; 69 70 mixin template Linear() 71 { 72 import std.algorithm : canFind, map; 73 import std.range : join; 74 import std.traits : FieldNameTuple; 75 76 private static alias T = typeof(this); 77 78 static T zero() 79 { 80 enum fragment = [FieldNameTuple!T].map!(field => "0.").join(","); 81 return mixin("T(" ~ fragment ~ ")"); 82 } 83 84 static T one() 85 { 86 enum fragment = [FieldNameTuple!T].map!(field => "1.").join(","); 87 return mixin("T(" ~ fragment ~ ")"); 88 } 89 90 inout T opUnary(string op)() if (["+", "-"].canFind(op)) 91 { 92 enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(","); 93 return mixin("T(" ~ fragment ~ ")"); 94 } 95 96 static if (is(T == Rotor3)) 97 { 98 /// Returns a rotor equivalent to first apply p, then apply q 99 inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*") 100 { 101 alias p = this; 102 Rotor3 r; 103 r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k; 104 r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j; 105 r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k; 106 r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i; 107 return r; 108 } 109 110 inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*") 111 { 112 Vector3 rv; 113 rv.x = a * v.x + xy * v.y - zx * v.z; 114 rv.y = a * v.y + yz * v.z - xy * v.x; 115 rv.z = a * v.z + zx * v.x - yz * v.y; 116 return rv; 117 } 118 119 inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*") 120 { 121 Vector3 vr; 122 vr.x = v.x * a - v.y * xy + v.z * zx; 123 vr.y = v.y * a - v.z * yz + v.x * xy; 124 vr.z = v.z * a - v.x * zx + v.y * yz; 125 return vr; 126 } 127 } 128 else 129 { 130 inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op)) 131 { 132 enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(","); 133 return mixin("T(" ~ fragment ~ ")"); 134 } 135 136 ref T opOpAssign(string op)(inout T rhs) if (["+", "-"].canFind(op)) 137 { 138 static foreach (field; [FieldNameTuple!T]) 139 mixin(field ~ op ~ "= rhs." ~ field ~ ";"); 140 return this; 141 } 142 } 143 144 inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op)) 145 { 146 enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(","); 147 return mixin("T(" ~ fragment ~ ")"); 148 } 149 150 inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op)) 151 { 152 enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(","); 153 return mixin("T(" ~ fragment ~ ")"); 154 } 155 156 ref T opOpAssign(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op)) 157 { 158 static foreach (field; [FieldNameTuple!T]) 159 mixin(field ~ op ~ "= rhs;"); 160 return this; 161 } 162 } 163 164 unittest 165 { 166 assert(Vector2.init == Vector2.zero); 167 assert(Vector2() == Vector2.zero); 168 assert(-Vector2(1, 2) == Vector2(-1, -2)); 169 auto a = Vector3(1, 2, 9); 170 immutable b = Vector3(3, 4, 9); 171 Vector3 c = a + b; 172 assert(c == Vector3(4, 6, 18)); 173 assert(4.0f - Vector2.zero == Vector2(4, 4)); 174 assert(Vector2.one - 3.0f == Vector2(-2, -2)); 175 a += 5; 176 assert(a == Vector3(6, 7, 14)); 177 a *= 0.5; 178 assert(a == Vector3(3, 3.5, 7)); 179 a += Vector3(3, 2.5, -1); 180 assert(a == Vector3(6, 6, 6)); 181 } 182 183 import std.traits : FieldNameTuple; 184 import std.algorithm : map; 185 import std.range : join; 186 187 float length(T)(T v) 188 { 189 enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+"); 190 return mixin("sqrt(" ~ fragment ~ ")"); 191 } 192 193 T normal(T)(T v) 194 { 195 return v / v.length; 196 } 197 198 float distance(T)(T lhs, T rhs) 199 { 200 return (lhs - rhs).length; 201 } 202 203 float dot(T)(T lhs, T rhs) 204 { 205 enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join( 206 "+"); 207 return mixin(fragment); 208 } 209 210 unittest 211 { 212 assert(Vector2(3, 4).length == 5); 213 const a = Vector2(-3, 4); 214 assert(a.normal == Vector2(-3. / 5., 4. / 5.)); 215 immutable b = Vector2(9, 8); 216 assert(b.distance(Vector2(-3, 3)) == 13); 217 assert(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)) == 47); 218 assert(Vector2.one.length == sqrt(2.0f)); 219 } 220 221 unittest 222 { 223 assert(Rotor3(1, 2, 3, 4) == Rotor3(1, Bivector3(2, 3, 4))); 224 } 225 226 /// Mix `amount` of `lhs` with `1-amount` of `rhs` 227 /// `amount` should be between 0 and 1, but can be anything 228 /// lerp(lhs, rhs, 0) == lhs 229 /// lerp(lhs, rhs, 1) == rhs 230 T lerp(T)(T lhs, T rhs, float amount) 231 { 232 return lhs + amount * (rhs - lhs); 233 } 234 235 /// angle betwenn vector and x-axis (+y +x -> positive) 236 float angle(Vector2 v) 237 { 238 return atan2(v.y, v.x); 239 } 240 241 Vector2 rotate(Vector2 v, float angle) 242 { 243 return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle)); 244 } 245 246 Vector2 slide(Vector2 v, Vector2 along) 247 { 248 return along.normal * dot(v, along); 249 } 250 251 Bivector2 wedge(Vector2 lhs, Vector2 rhs) 252 { 253 Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x}; 254 return result; 255 } 256 257 // dfmt off 258 Bivector3 wedge(Vector3 lhs, Vector3 rhs) 259 { 260 Bivector3 result = { 261 xy: lhs.x * rhs.y - lhs.y * rhs.x, 262 yz: lhs.y * rhs.z - lhs.z * rhs.y, 263 zx: lhs.z * rhs.x - lhs.x * rhs.z, 264 }; 265 return result; 266 } 267 268 Vector3 transform(Vector3 v, Matrix4 mat) 269 { 270 with (v) with (mat) 271 return Vector3( 272 m0 * x + m4 * y + m8 * z + m12, 273 m1 * x + m5 * y + m9 * z + m13, 274 m2 * x + m6 * y + m10 * z + m14 275 ); 276 } 277 // dfmt on 278 279 Vector3 cross(Vector3 lhs, Vector3 rhs) 280 { 281 auto v = wedge(lhs, rhs); 282 return Vector3(v.yz, v.zx, v.xy); 283 } 284 285 unittest { 286 // TODO 287 } 288 289 /// Returns a unit rotor that rotates `from` to `to` 290 Rotor3 rotation(Vector3 from, Vector3 to) 291 { 292 return Rotor3(1 + dot(to, from), wedge(to, from)).normal; 293 } 294 295 Rotor3 rotation(float angle, Bivector3 plane) 296 { 297 return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane); 298 } 299 300 /// Rotate q by p 301 Rotor3 rotate(Rotor3 p, Rotor3 q) 302 { 303 return p * q * p.reverse; 304 } 305 306 /// Rotate v by r 307 Vector3 rotate(Rotor3 r, Vector3 v) 308 { 309 return r * v * r.reverse; 310 } 311 312 Rotor3 reverse(Rotor3 r) 313 { 314 return Rotor3(r.a, -r.b); 315 } 316 317 unittest 318 { 319 // TODO 320 }