1 /*******************************************************************************************
2 *
3 *   reasings - raylib easings library, based on Robert Penner library
4 *
5 *   Useful easing functions for values animation
6 *
7 *   This header uses:
8 *       #define EASINGS_STATIC_INLINE       // Inlines all functions code, so it runs faster.
9 *                                           // This requires lots of memory on system.
10 *   How to use:
11 *   The four inputs t,b,c,d are defined as follows:
12 *   t = current time (in any unit measure, but same unit as duration)
13 *   b = starting value to interpolate
14 *   c = the total change in value of b that needs to occur
15 *   d = total time it should take to complete (duration)
16 *
17 *   Example:
18 *
19 *   int currentTime = 0;
20 *   int duration = 100;
21 *   float startPositionX = 0.0f;
22 *   float finalPositionX = 30.0f;
23 *   float currentPositionX = startPositionX;
24 *
25 *   while (currentPositionX < finalPositionX)
26 *   {
27 *       currentPositionX = EaseSineIn(currentTime, startPositionX, finalPositionX - startPositionX, duration);
28 *       currentTime++;
29 *   }
30 *
31 *   A port of Robert Penner's easing equations to C (http://robertpenner.com/easing/)
32 *
33 *   Robert Penner License
34 *   ---------------------------------------------------------------------------------
35 *   Open source under the BSD License.
36 *
37 *   Copyright (c) 2001 Robert Penner. All rights reserved.
38 *
39 *   Redistribution and use in source and binary forms, with or without modification,
40 *   are permitted provided that the following conditions are met:
41 *
42 *       - Redistributions of source code must retain the above copyright notice,
43 *         this list of conditions and the following disclaimer.
44 *       - Redistributions in binary form must reproduce the above copyright notice,
45 *         this list of conditions and the following disclaimer in the documentation
46 *         and/or other materials provided with the distribution.
47 *       - Neither the name of the author nor the names of contributors may be used
48 *         to endorse or promote products derived from this software without specific
49 *         prior written permission.
50 *
51 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
52 *   ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 *   WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
54 *   IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
55 *   INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
56 *   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58 *   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
59 *   OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60 *   OF THE POSSIBILITY OF SUCH DAMAGE.
61 *   ---------------------------------------------------------------------------------
62 *
63 *   Copyright (c) 2015-2022 Ramon Santamaria (@raysan5)
64 *
65 *   This software is provided "as-is", without any express or implied warranty. In no event
66 *   will the authors be held liable for any damages arising from the use of this software.
67 *
68 *   Permission is granted to anyone to use this software for any purpose, including commercial
69 *   applications, and to alter it and redistribute it freely, subject to the following restrictions:
70 *
71 *     1. The origin of this software must not be misrepresented; you must not claim that you
72 *     wrote the original software. If you use this software in a product, an acknowledgment
73 *     in the product documentation would be appreciated but is not required.
74 *
75 *     2. Altered source versions must be plainly marked as such, and must not be misrepresented
76 *     as being the original software.
77 *
78 *     3. This notice may not be removed or altered from any source distribution.
79 *
80 **********************************************************************************************/
81 module raylib.reasings;
82 
83 extern (C) nothrow @nogc:
84 pragma(inline, true): // NOTE: By default, compile functions as static inline
85 
86 import core.stdc.math; // Required for: sinf(), cosf(), sqrt(), pow()
87 
88 enum PI = 3.14159265358979323846f; //Required as PI is not always defined in math.h
89 
90 // Linear Easing functions
91 static float EaseLinearNone(float t, float b, float c, float d) { return (c*t/d + b); }
92 static float EaseLinearIn(float t, float b, float c, float d) { return (c*t/d + b); }
93 static float EaseLinearOut(float t, float b, float c, float d) { return (c*t/d + b); }
94 static float EaseLinearInOut(float t,float b, float c, float d) { return (c*t/d + b); }
95 
96 // Sine Easing functions
97 static float EaseSineIn(float t, float b, float c, float d) { return (-c*cosf(t/d*(PI/2.0f)) + c + b); }
98 static float EaseSineOut(float t, float b, float c, float d) { return (c*sinf(t/d*(PI/2.0f)) + b); }
99 static float EaseSineInOut(float t, float b, float c, float d) { return (-c/2.0f*(cosf(PI*t/d) - 1.0f) + b); }
100 
101 // Circular Easing functions
102 static float EaseCircIn(float t, float b, float c, float d) { t /= d; return (-c*(sqrtf(1.0f - t*t) - 1.0f) + b); }
103 static float EaseCircOut(float t, float b, float c, float d) { t = t/d - 1.0f; return (c*sqrtf(1.0f - t*t) + b); }
104 static float EaseCircInOut(float t, float b, float c, float d)
105 {
106     if ((t/=d/2.0f) < 1.0f) return (-c/2.0f*(sqrtf(1.0f - t*t) - 1.0f) + b);
107     t -= 2.0f; return (c/2.0f*(sqrtf(1.0f - t*t) + 1.0f) + b);
108 }
109 
110 // Cubic Easing functions
111 static float EaseCubicIn(float t, float b, float c, float d) { t /= d; return (c*t*t*t + b); }
112 static float EaseCubicOut(float t, float b, float c, float d) { t = t/d - 1.0f; return (c*(t*t*t + 1.0f) + b); }
113 static float EaseCubicInOut(float t, float b, float c, float d)
114 {
115     if ((t/=d/2.0f) < 1.0f) return (c/2.0f*t*t*t + b);
116     t -= 2.0f; return (c/2.0f*(t*t*t + 2.0f) + b);
117 }
118 
119 // Quadratic Easing functions
120 static float EaseQuadIn(float t, float b, float c, float d) { t /= d; return (c*t*t + b); }
121 static float EaseQuadOut(float t, float b, float c, float d) { t /= d; return (-c*t*(t - 2.0f) + b); }
122 static float EaseQuadInOut(float t, float b, float c, float d)
123 {
124     if ((t/=d/2) < 1) return (((c/2)*(t*t)) + b);
125     return (-c/2.0f*(((t - 1.0f)*(t - 3.0f)) - 1.0f) + b);
126 }
127 
128 // Exponential Easing functions
129 static float EaseExpoIn(float t, float b, float c, float d) { return (t == 0.0f) ? b : (c*powf(2.0f, 10.0f*(t/d - 1.0f)) + b); }
130 static float EaseExpoOut(float t, float b, float c, float d) { return (t == d) ? (b + c) : (c*(-powf(2.0f, -10.0f*t/d) + 1.0f) + b);    }
131 static float EaseExpoInOut(float t, float b, float c, float d)
132 {
133     if (t == 0.0f) return b;
134     if (t == d) return (b + c);
135     if ((t/=d/2.0f) < 1.0f) return (c/2.0f*powf(2.0f, 10.0f*(t - 1.0f)) + b);
136 
137     return (c/2.0f*(-powf(2.0f, -10.0f*(t - 1.0f)) + 2.0f) + b);
138 }
139 
140 // Back Easing functions
141 static float EaseBackIn(float t, float b, float c, float d)
142 {
143     float s = 1.70158f;
144     float postFix = t/=d;
145     return (c*(postFix)*t*((s + 1.0f)*t - s) + b);
146 }
147 
148 static float EaseBackOut(float t, float b, float c, float d)
149 {
150     float s = 1.70158f;
151     t = t/d - 1.0f;
152     return (c*(t*t*((s + 1.0f)*t + s) + 1.0f) + b);
153 }
154 
155 static float EaseBackInOut(float t, float b, float c, float d)
156 {
157     float s = 1.70158f;
158     if ((t/=d/2.0f) < 1.0f)
159     {
160         s *= 1.525f;
161         return (c/2.0f*(t*t*((s + 1.0f)*t - s)) + b);
162     }
163 
164     float postFix = t-=2.0f;
165     s *= 1.525f;
166     return (c/2.0f*((postFix)*t*((s + 1.0f)*t + s) + 2.0f) + b);
167 }
168 
169 // Bounce Easing functions
170 static float EaseBounceOut(float t, float b, float c, float d)
171 {
172     if ((t/=d) < (1.0f/2.75f))
173     {
174         return (c*(7.5625f*t*t) + b);
175     }
176     else if (t < (2.0f/2.75f))
177     {
178         float postFix = t-=(1.5f/2.75f);
179         return (c*(7.5625f*(postFix)*t + 0.75f) + b);
180     }
181     else if (t < (2.5/2.75))
182     {
183         float postFix = t-=(2.25f/2.75f);
184         return (c*(7.5625f*(postFix)*t + 0.9375f) + b);
185     }
186     else
187     {
188         float postFix = t-=(2.625f/2.75f);
189         return (c*(7.5625f*(postFix)*t + 0.984375f) + b);
190     }
191 }
192 
193 static float EaseBounceIn(float t, float b, float c, float d) { return (c - EaseBounceOut(d - t, 0.0f, c, d) + b); }
194 static float EaseBounceInOut(float t, float b, float c, float d)
195 {
196     if (t < d/2.0f) return (EaseBounceIn(t*2.0f, 0.0f, c, d)*0.5f + b);
197     else return (EaseBounceOut(t*2.0f - d, 0.0f, c, d)*0.5f + c*0.5f + b);
198 }
199 
200 // Elastic Easing functions
201 static float EaseElasticIn(float t, float b, float c, float d)
202 {
203     if (t == 0.0f) return b;
204     if ((t/=d) == 1.0f) return (b + c);
205 
206     float p = d*0.3f;
207     float a = c;
208     float s = p/4.0f;
209     float postFix = a*powf(2.0f, 10.0f*(t-=1.0f));
210 
211     return (-(postFix*sinf((t*d-s)*(2.0f*PI)/p )) + b);
212 }
213 
214 static float EaseElasticOut(float t, float b, float c, float d)
215 {
216     if (t == 0.0f) return b;
217     if ((t/=d) == 1.0f) return (b + c);
218 
219     float p = d*0.3f;
220     float a = c;
221     float s = p/4.0f;
222 
223     return (a*powf(2.0f,-10.0f*t)*sinf((t*d-s)*(2.0f*PI)/p) + c + b);
224 }
225 
226 static float EaseElasticInOut(float t, float b, float c, float d)
227 {
228     if (t == 0.0f) return b;
229     if ((t/=d/2.0f) == 2.0f) return (b + c);
230 
231     float p = d*(0.3f*1.5f);
232     float a = c;
233     float s = p/4.0f;
234 
235     if (t < 1.0f)
236     {
237         float postFix = a*powf(2.0f, 10.0f*(t-=1.0f));
238         return -0.5f*(postFix*sinf((t*d-s)*(2.0f*PI)/p)) + b;
239     }
240 
241     float postFix = a*powf(2.0f, -10.0f*(t-=1.0f));
242 
243     return (postFix*sinf((t*d-s)*(2.0f*PI)/p)*0.5f + c + b);
244 }