1 module raymathext;
2 
3 import raylib;
4 import std.math;
5 
6 pragma(inline, true):
7 
8 version (unittest)
9 {
10     import fluent.asserts;
11 }
12 
13 mixin template Linear()
14 {
15     import std.algorithm : canFind, map;
16     import std.range : join;
17     import std.traits : FieldNameTuple;
18 
19     private static alias T = typeof(this);
20 
21     static T zero()
22     {
23         enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
24         return mixin("T(" ~ fragment ~ ")");
25     }
26 
27     static T one()
28     {
29         enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
30         return mixin("T(" ~ fragment ~ ")");
31     }
32 
33     inout T opUnary(string op)() if (["+", "-"].canFind(op))
34     {
35         enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
36         return mixin("T(" ~ fragment ~ ")");
37     }
38 
39     static if (is(T == Rotor3))
40     {
41         /// Returns a rotor equivalent to first apply p, then apply q
42         inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
43         {
44             alias p = this;
45             Rotor3 r;
46             r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
47             r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
48             r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
49             r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
50             return r;
51         }
52 
53         inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
54         {
55             Vector3 rv;
56             rv.x = a * v.x + xy * v.y - zx * v.z;
57             rv.y = a * v.y + yz * v.z - xy * v.x;
58             rv.z = a * v.z + zx * v.x - yz * v.y;
59             return rv;
60         }
61 
62         inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
63         {
64             Vector3 vr;
65             vr.x = v.x * a - v.y * xy + v.z * zx;
66             vr.y = v.y * a - v.z * yz + v.x * xy;
67             vr.z = v.z * a - v.x * zx + v.y * yz;
68             return vr;
69         }
70     }
71     else
72     {
73         inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
74         {
75             enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
76             return mixin("T(" ~ fragment ~ ")");
77         }
78 
79         ref T opOpAssign(string op)(inout T rhs) if (["+", "-"].canFind(op))
80         {
81             static foreach (field; [FieldNameTuple!T])
82                 mixin(field ~ op ~ "= rhs." ~ field ~ ";");
83             return this;
84         }
85     }
86 
87     inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
88     {
89         enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
90         return mixin("T(" ~ fragment ~ ")");
91     }
92 
93     inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
94     {
95         enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
96         return mixin("T(" ~ fragment ~ ")");
97     }
98 
99     ref T opOpAssign(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
100     {
101         static foreach (field; [FieldNameTuple!T])
102             mixin(field ~ op ~ "= rhs;");
103         return this;
104     }
105 }
106 
107 unittest
108 {
109     Assert.equal(Vector2.init, Vector2.zero);
110     Assert.equal(Vector2(), Vector2.zero);
111     Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
112     auto a = Vector3(1, 2, 9);
113     immutable b = Vector3(3, 4, 9);
114     Vector3 c = a + b;
115     Assert.equal(c, Vector3(4, 6, 18));
116     Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
117     Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
118     a += 5;
119     Assert.equal(a, Vector3(6, 7, 14));
120     a *= 0.5;
121     Assert.equal(a, Vector3(3, 3.5, 7));
122     a += Vector3(3, 2.5, -1);
123     Assert.equal(a, Vector3(6, 6, 6));
124 }
125 
126 import std.traits : FieldNameTuple;
127 import std.algorithm : map;
128 import std.range : join;
129 
130 float length(T)(T v)
131 {
132     enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
133     return mixin("sqrt(" ~ fragment ~ ")");
134 }
135 
136 T normal(T)(T v)
137 {
138     return v / v.length;
139 }
140 
141 float distance(T)(T lhs, T rhs)
142 {
143     return (lhs - rhs).length;
144 }
145 
146 float dot(T)(T lhs, T rhs)
147 {
148     enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
149                 "+");
150     return mixin(fragment);
151 }
152 
153 unittest
154 {
155     Assert.equal(Vector2(3, 4).length, 5);
156     const a = Vector2(-3, 4);
157     Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
158     immutable b = Vector2(9, 8);
159     Assert.equal(b.distance(Vector2(-3, 3)), 13);
160     Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
161     Assert.equal(Vector2.one.length, sqrt(2.0f));
162 }
163 
164 unittest
165 {
166     Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
167 }
168 
169 /// Mix `amount` of `lhs` with `1-amount` of `rhs`
170 ///   `amount` should be between 0 and 1, but can be anything
171 ///   lerp(lhs, rhs, 0) == lhs
172 ///   lerp(lhs, rhs, 1) == rhs
173 T lerp(T)(T lhs, T rhs, float amount)
174 {
175     return lhs + amount * (rhs - lhs);
176 }
177 
178 /// angle betwenn vector and x-axis (+y +x -> positive)
179 float angle(Vector2 v)
180 {
181     return atan2(v.y, v.x);
182 }
183 
184 Vector2 rotate(Vector2 v, float angle)
185 {
186     return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
187 }
188 
189 Vector2 slide(Vector2 v, Vector2 along)
190 {
191     return along.normal * dot(v, along);
192 }
193 
194 Bivector2 wedge(Vector2 lhs, Vector2 rhs)
195 {
196     Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
197     return result;
198 }
199 
200 // dfmt off
201 Bivector3 wedge(Vector3 lhs, Vector3 rhs)
202 {
203     Bivector3 result = {
204         xy: lhs.x * rhs.y - lhs.y * rhs.x,
205         yz: lhs.y * rhs.z - lhs.z * rhs.y,
206         zx: lhs.z * rhs.x - lhs.x * rhs.z,
207     };
208     return result;
209 }
210 
211 Vector3 transform(Vector3 v, Matrix4 mat)
212 {
213     with (v) with (mat)
214         return Vector3(
215             m0 * x + m4 * y + m8 * z + m12,
216             m1 * x + m5 * y + m9 * z + m13,
217             m2 * x + m6 * y + m10 * z + m14
218         );
219 }
220 // dfmt on
221 
222 Vector3 cross(Vector3 lhs, Vector3 rhs)
223 {
224     auto v = wedge(lhs, rhs);
225     return Vector3(v.yz, v.zx, v.xy);
226 }
227 
228 unittest {
229     // TODO
230 }
231 
232 /// Returns a unit rotor that rotates `from` to `to`
233 Rotor3 rotation(Vector3 from, Vector3 to)
234 {
235     return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
236 }
237 
238 Rotor3 rotation(float angle, Bivector3 plane)
239 {
240     return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
241 }
242 
243 /// Rotate q by p
244 Rotor3 rotate(Rotor3 p, Rotor3 q)
245 {
246     return p * q * p.reverse;
247 }
248 
249 /// Rotate v by r
250 Vector3 rotate(Rotor3 r, Vector3 v)
251 {
252     return r * v * r.reverse;
253 }
254 
255 Rotor3 reverse(Rotor3 r)
256 {
257     return Rotor3(r.a, -r.b);
258 }
259 
260 unittest
261 {
262     // TODO
263 }