1 module raymathext;
2 
3 import raylib;
4 import std.math;
5 
6 pragma(inline, true):
7 
8 // Bivector2 type
9 struct Bivector2
10 {
11     float xy = 0.0f;
12     alias xy this;
13     mixin Linear;
14 }
15 
16 // Bivector3 type
17 /// Beware of the field order
18 /// xy is the first field
19 struct Bivector3
20 {
21     float xy = 0.0f;
22     float yz = 0.0f;
23     float zx = 0.0f;
24     mixin Linear;
25 }
26 
27 // Rotor type
28 struct Rotor3
29 {
30     float a = 1.0f;
31     float xy = 0.0f;
32     float yz = 0.0f;
33     float zx = 0.0f;
34     mixin Linear;
35 
36     alias i = yz;
37     alias j = zx;
38     alias k = xy;
39 
40     @property Bivector3 b()
41     {
42         return Bivector3(xy, yz, zx);
43     }
44 
45     @property Bivector3 b(Bivector3 _b)
46     {
47         xy = _b.xy;
48         yz = _b.yz;
49         zx = _b.zx;
50         return _b;
51     }
52 
53     this(float _a, Bivector3 _b)
54     {
55         a = _a;
56         b = _b;
57     }
58 
59     this(float _a, float _xy, float _yz, float _zx)
60     {
61         a = _a;
62         xy = _xy;
63         yz = _yz;
64         zx = _zx;
65     }
66 }
67 
68 alias Matrix4 = Matrix;
69 
70 version (unittest)
71 {
72     import fluent.asserts;
73 }
74 
75 mixin template Linear()
76 {
77     import std.algorithm : canFind, map;
78     import std.range : join;
79     import std.traits : FieldNameTuple;
80 
81     private static alias T = typeof(this);
82 
83     static T zero()
84     {
85         enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
86         return mixin("T(" ~ fragment ~ ")");
87     }
88 
89     static T one()
90     {
91         enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
92         return mixin("T(" ~ fragment ~ ")");
93     }
94 
95     inout T opUnary(string op)() if (["+", "-"].canFind(op))
96     {
97         enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
98         return mixin("T(" ~ fragment ~ ")");
99     }
100 
101     static if (is(T == Rotor3))
102     {
103         /// Returns a rotor equivalent to first apply p, then apply q
104         inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
105         {
106             alias p = this;
107             Rotor3 r;
108             r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
109             r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
110             r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
111             r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
112             return r;
113         }
114 
115         inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
116         {
117             Vector3 rv;
118             rv.x = a * v.x + xy * v.y - zx * v.z;
119             rv.y = a * v.y + yz * v.z - xy * v.x;
120             rv.z = a * v.z + zx * v.x - yz * v.y;
121             return rv;
122         }
123 
124         inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
125         {
126             Vector3 vr;
127             vr.x = v.x * a - v.y * xy + v.z * zx;
128             vr.y = v.y * a - v.z * yz + v.x * xy;
129             vr.z = v.z * a - v.x * zx + v.y * yz;
130             return vr;
131         }
132     }
133     else
134     {
135         inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
136         {
137             enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
138             return mixin("T(" ~ fragment ~ ")");
139         }
140     }
141 
142     inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
143     {
144         enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
145         return mixin("T(" ~ fragment ~ ")");
146     }
147 
148     inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
149     {
150         enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
151         return mixin("T(" ~ fragment ~ ")");
152     }
153 }
154 
155 unittest
156 {
157     Assert.equal(Vector2.init, Vector2.zero);
158     Assert.equal(Vector2(), Vector2.zero);
159     Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
160     auto a = Vector3(1, 2, 9);
161     immutable b = Vector3(3, 4, 9);
162     Vector3 c = a + b;
163     Assert.equal(c, Vector3(4, 6, 18));
164     Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
165     Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
166 }
167 
168 import std.traits : FieldNameTuple;
169 import std.algorithm : map;
170 import std.range : join;
171 
172 float length(T)(T v)
173 {
174     enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
175     return mixin("sqrt(" ~ fragment ~ ")");
176 }
177 
178 T normal(T)(T v)
179 {
180     return v / v.length;
181 }
182 
183 float distance(T)(T lhs, T rhs)
184 {
185     return (lhs - rhs).length;
186 }
187 
188 float dot(T)(T lhs, T rhs)
189 {
190     enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
191                 "+");
192     return mixin(fragment);
193 }
194 
195 unittest
196 {
197     Assert.equal(Vector2(3, 4).length, 5);
198     const a = Vector2(-3, 4);
199     Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
200     immutable b = Vector2(9, 8);
201     Assert.equal(b.distance(Vector2(-3, 3)), 13);
202     Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
203     Assert.equal(Vector2.one.length, sqrt(2.0f));
204 }
205 
206 unittest
207 {
208     Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
209 }
210 
211 /// Mix `amount` of `lhs` with `1-amount` of `rhs`
212 ///   `amount` should be between 0 and 1, but can be anything
213 ///   lerp(lhs, rhs, 0) == lhs
214 ///   lerp(lhs, rhs, 1) == rhs
215 T lerp(T)(T lhs, T rhs, float amount)
216 {
217     return lhs + amount * (rhs - lhs);
218 }
219 
220 /// angle betwenn vector and x-axis (+y +x -> positive)
221 float angle(Vector2 v)
222 {
223     return atan2(v.y, v.x);
224 }
225 
226 Vector2 rotate(Vector2 v, float angle)
227 {
228     return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
229 }
230 
231 Vector2 slide(Vector2 v, Vector2 along)
232 {
233     return along.normal * dot(v, along);
234 }
235 
236 Bivector2 wedge(Vector2 lhs, Vector2 rhs)
237 {
238     Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
239     return result;
240 }
241 
242 // dfmt off
243 Bivector3 wedge(Vector3 lhs, Vector3 rhs)
244 {
245     Bivector3 result = {
246         xy: lhs.x * rhs.y - lhs.y * rhs.x,
247         yz: lhs.y * rhs.z - lhs.z * rhs.y,
248         zx: lhs.z * rhs.x - lhs.x * rhs.z,
249     };
250     return result;
251 }
252 
253 Vector3 transform(Vector3 v, Matrix4 mat)
254 {
255     with (v) with (mat)
256         return Vector3(
257             m0 * x + m4 * y + m8 * z + m12,
258             m1 * x + m5 * y + m9 * z + m13,
259             m2 * x + m6 * y + m10 * z + m14
260         );
261 }
262 // dfmt on
263 
264 Vector3 cross(Vector3 lhs, Vector3 rhs)
265 {
266     auto v = wedge(lhs, rhs);
267     return Vector3(v.yz, v.zx, v.xy);
268 }
269 
270 unittest {
271     // TODO
272 }
273 
274 /// Returns a unit rotor that rotates `from` to `to`
275 Rotor3 rotation(Vector3 from, Vector3 to)
276 {
277     return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
278 }
279 
280 Rotor3 rotation(float angle, Bivector3 plane)
281 {
282     return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
283 }
284 
285 /// Rotate q by p
286 Rotor3 rotate(Rotor3 p, Rotor3 q)
287 {
288     return p * q * p.reverse;
289 }
290 
291 /// Rotate v by r
292 Vector3 rotate(Rotor3 r, Vector3 v)
293 {
294     return r * v * r.reverse;
295 }
296 
297 Rotor3 reverse(Rotor3 r)
298 {
299     return Rotor3(r.a, -r.b);
300 }
301 
302 unittest
303 {
304     // TODO
305 }